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SPATIAL TWISTED CENTRAL CONFIGURATIONS OF NEWTONIAN

6-BODY PROBLEM

L. DING1, G.W. REN1, Z.L. YANG1, F.Y. LI2

Abstract. By employing a simple method that relies on known results for the circulant matrix

A1, and by analyzing the eigenvalues and eigenvectors of four circulant matrices (B̃, B̃∗, D̃ and

D̃∗), in the twisted configurations of the spatial Newtonian 6-body problem formed by two

parallel equilateral triangles with a distance h > 0, we demonstrate that when the twist angle

θ ∈ [0, 2π), there is no spatial twisted central configuration with unequal masses located at the

vertices of each separate equilateral triangle.
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1. Introduction and main result

Given n positive masses mk with positions xk ∈ Rd, k = 1, . . . , n and d ∈ Z+, we consider the

configuration space (Rd)n \ △n, where

△n = {x = (x1, x2, . . . , xn) |xj = xk, 1 ≤ j ̸= k ≤ n}.

A central configuration refers to a specific configuration of n masses, where the acceleration

vector of each mass is a scalar multiple of the corresponding position vector, shared by all the

masses. To be more precise, the definition of a central configuration is given as follows.

Definition 1.1. [11, Page 109] We say a configuration q = (q1, q2, . . . , qn) ∈ (Rd)n\△n is a

central configuration at some moment if there exists a constant λ ∈ R such that∑
j ̸=k

1≤j≤n

mjmk(qj − qk)

|qj − qk|3
= −λmk(qk − x0), k = 1, 2, . . . , n, (1)

where the center of masses is x0 = [
∑

1≤k≤nmkqk]/[
∑

1≤k≤nmk].

The study of the Newtonian n-body problem places great importance on central configura-

tions. These configurations play a significant role in the analysis of collision orbits, expanding

gravitational systems, and the limitations that affect the configurations assumed by the bounded

motion of the n-body problem [17, 21].
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Figure 1. Planar N -body problem.

Figure 2. Planar 2N -body problem with twisted angle

The Newtonian 3-body problem has a well-known central configuration where three masses are

positioned at the vertices of a regular 3-polygon. In 1772, Lagrange [9] discovered the Lagrange

equilateral-triangle central configuration. For n = 4, in [12] the authors made an intriguing

finding stating that if four masses are located at the vertices of a regular 4-polygon, they must

be equal in weight, which is different from the case of n = 3. In [20] the author extended the

result to n = 5. In 1985, the authors of the paper [16] studied the case where n = N ≥ 4, and

the masses were located at the vertices of a regular N -polygon. They proved the famous result

that if the N masses form a central configuration, then the N masses must be equal (refer to

Fig.1). Recently, in [1], the authors extended the result of the paper [16] to planar Newtonian

(N+1)-body problem, and in [19], the author extended the result given in [16] from Newtonian

potential to general homogeneous potentials.

Assume that the masses m1, . . . ,mN are located at the vertices of one regular N -polygon; the

particles mN+1, . . . ,m2N are located at the vertices of the other regular N -polygon (see Fig.3):{
ql = (ρl, 0), l = 1, . . . , N,

qs = (rρse
iθ, h), s = l +N = N + 1, . . . , 2N, θ ∈ [0, 2π), h > 0,

(2)
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where ρl = eiθl (θl = 2lπ/N) is the l-th root of the N -roots of unity. Then, |ρl| = |ρs| = 1, and

we call r and h the ratio of the sizes of the two N -polygons and the distance between the two

paralleled regular N -polygons in R3, respectively.

In 2003, the authors of [24] extended the results given in [16] to planar twisted central con-

figurations of Newtonian 2N -body problem (n = 2N ≥ 6), which was formed by two concentric

regular N -polygons with any twist angle θ and h = 0 (see Fig.2). For this planar central configu-

ration, they showed that the masses in each separate regular N -polygon are equal, and the main

tool is based on the analysis of eigenvalues and eigenvectors of the corresponding circulant ma-

trix. For spatial twisted central configurations of Newtonian 2N -body problem (n = 2N ≥ 6),

since the distance h > 0, it is very difficult to analyze the eigenvalues and eigenvectors of the

corresponding circulant matrix.

In 2012, the authors of [23] studied spatial twisted central configurations involving two parallel

regular N -polygons with distance h > 0 (see Fig.3), and under the assumption that the masses

in each separate regular N -polygon are equal, they derived that the twist angles must be θ = 0

or θ = π/N . In 2015, in order to extend the results given in [24] to spatial twisted central

configurations of Newtonian 2N -body problem (see Fig.3), in [18] the authors introduced a

new circulant matrix Ar with r > 0, which was to obtain the relationship for eigenvalues

of the circulant matrix Ar when the twist angle was θ = 0. They demonstrated that for

k = 1, 2, . . . , N , λr,k > 0 if 0 < r < 1 and λr,k < 0 if r > 1, where r represents the ratio between

the radii of the two regular N -polygons. Furthermore, they obtained that for the spatial twisted

central configurations, if the twist angle θ = 0, then the masses in each separate regular N -

polygon are equal. However, their method only applies when the twist angle is θ = 0, and it

doesn’t work for twist angles θ ∈ (0, 2π). For more details in this direction, one can refer to

[2, 3, 4, 5, 6, 7, 8, 10, 13, 15, 22].

Figure 3. Spatial 2N -body problem with twisted angle θ

It is important to note that in the Lagrange equilateral-triangle central configuration, where

three masses are positioned at the vertices of an equilateral triangle, the three masses are not

necessarily equal. Additionally, for the twisted configurations of the spatial Newtonian 6-body

problem, which consist of two parallel equilateral triangles with a distance h > 0, when the twist

angle θ = 0, if the masses at the vertices of each triangle are unequal, then these six masses

cannot form a central configuration. This leads to a natural question:
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• In the spatial Newtonian 6-body problem formed by two parallel equilateral triangles

with a distance h > 0, when the twist angles θ ∈ (0, 2π), does there exist a configuration

with unequal masses located at the vertices of each separate equilateral triangle, such

that the six masses form a spatial twisted central configuration?

In this paper, by utilizing the relationship between the eigenvalues of four introduced cir-

culant matrices (B̃, B̃∗, D̃, and D̃∗) and some known results of eigenvalues and eigenvec-

tors of the circulant matrix A1, we can answer the question. In what follows, for six masses

(m1,m2,m3,m4,m5,m6) ∈ (R+)6 with positions q ∈ (q1, q2, q3, q4, q5, q6) ∈ (R3)6\△6, in (2), if

we set N = 3 and h > 0, then (2) is translated into ql = (ρl, 0) = (eiθl , 0) = (e
2lπ
3

i, 0), l = 1, 2, 3,

qs = (rρse
iθ, h) = (rei(θs+θ), h) = (rei(

2sπ
3

+θ), h), θ ∈ [0, 2π), r > 0, h > 0, s = 4, 5, 6.
(3)

Then, our main result is described as follows.

Theorem 1.1. Let the configuration q = (q1, q2, · · · , q6) be defined as in (3). If q is a spatial

twisted central configuration for the mass vector m = (m1,m2, · · · ,m6), then m1 = m2 = m3

and m4 = m5 = m6.

Employing Theorem 1.1, we have

Corollary 1.1. For the configuration q in (3) and any θ ∈ [0, 2π), there is no configuration

with unequal masses located at the vertices of each separate equilateral triangle, such that the six

masses form a spatial twisted central configuration.

2. Preliminaries and some useful lemmas

We prove our main result using circulant matrices, and the definition of a circulant matrix is

as follows.

Definition 2.1. [14, Pages 65-66] A matrix C = (cjk)3×3 (1 ≤ j, k ≤ 3) is circulant if cj,k =

cj−1,k−1 where cj,0 = cj,3 and c0,k = c3,k.

We have the following lemmas regarding the properties of any circulant matrix.

Lemma 2.1. [16, Page 303] Every 3× 3 circulant matrix has the same forms of the eigenvalues

λj and the corresponding eigenvectors νj, more precisely,

λj =
∑

1≤k≤3

c1,kρ
k−1
j−1 , νj = (ρj−1, ρ

2
j−1, ρ

3
j−1)

T , j = 1, 2, 3. (4)

Lemma 2.2. [1, Proposition 2.2] The eigenvectors νj with j = 1, 2, 3 form a basis of C3.

Lemma 2.3. [14, Page 65] Let (ν̄k)
T be the conjugate transpose of νk. Then

(ν̄k)
T νj =

{
3, k = j,

0, k ̸= j;
(ρ2, ρ4, ρ6)(ν̄3)

T = 3.

Let matrices A1, B̃, B̃∗, D̃ and D̃∗ be defined as follows.

A1 =

 0 1−ρ1
|1−ρ1|3

1−ρ2
|1−ρ2|3

1−ρ2
|1−ρ2|3 0 1−ρ1

|1−ρ1|3
1−ρ1

|1−ρ1|3
1−ρ2

|1−ρ2|3 0

 ,
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B̃ =


1

(|rρ0eiθ−1|2+h2)
3
2

1

(|rρ1eiθ−1|2+h2)
3
2

1

(|rρ2eiθ−1|2+h2)
3
2

1

(|rρ2eiθ−1|2+h2)
3
2

1

(|rρ0eiθ−1|2+h2)
3
2

1

(|rρ1eiθ−1|2+h2)
3
2

1

(|rρ1eiθ−1|2+h2)
3
2

1

(|rρ2eiθ−1|2+h2)
3
2

1

(|rρ0eiθ−1|2+h2)
3
2

 ,

B̃∗ =


1

(|ρ0−reiθ|2+h2)
3
2

1

(|ρ1−reiθ|2+h2)
3
2

1

(|ρ2−reiθ|2+h2)
3
2

1

(|ρ2−reiθ|2+h2)
3
2

1

(|ρ0−reiθ|2+h2)
3
2

1

(|ρ1−reiθ|2+h2)
3
2

1

(|ρ1−reiθ|2+h2)
3
2

1

(|ρ2−reiθ|2+h2)
3
2

1

(|ρ0−reiθ|2+h2)
3
2

 ,

D̃ =


ρ0

(|rρ0eiθ−1|2+h2)
3
2

ρ1

(|rρ1eiθ−1|2+h2)
3
2

ρ2

(|rρ2eiθ−1|2+h2)
3
2

ρ2

(|rρ2eiθ−1|2+h2)
3
2

ρ0

(|rρ0eiθ−1|2+h2)
3
2

ρ1

(|rρ1eiθ−1|2+h2)
3
2

ρ1

(|rρ1eiθ−1|2+h2)
3
2

ρ2

(|rρ2eiθ−1|2+h2)
3
2

ρ0

(|rρ0eiθ−1|2+h2)
3
2


and

D̃∗ =


ρ0

(|ρ0−reiθ|2+h2)
3
2

ρ1

(|ρ1−reiθ|2+h2)
3
2

ρ2

(|ρ2−reiθ|2+h2)
3
2

ρ2

(|ρ2−reiθ|2+h2)
3
2

ρ0

(|ρ0−reiθ|2+h2)
3
2

ρ1

(|ρ1−reiθ|2+h2)
3
2

ρ1

(|ρ1−reiθ|2+h2)
3
2

ρ2

(|ρ2−reiθ|2+h2)
3
2

ρ0

(|ρ0−reiθ|2+h2)
3
2

 .

Here, by the definition of ρl, it’s not hard to see that ρ0 = e2πi∗0/3 = 1, ρ1 = e2πi∗1/3 = e2πi/3

and ρ2 = e2πi∗2/3 = e4πi/3. It is easy to verify that any one of A1, B, B∗, D and D∗ is a circulant

matrix. Moreover, for the five matrices, we have the following lemmas.

Lemma 2.4. [16, Corollary] For the eigenvalues of circulant matrix A1, we have λ2(A1) = 0.

Lemma 2.5. [24, Lemma 2.3] Let E,F be any two circulant matrices, then matrices E+F and

E − F are circulant. Moreover, the eigenvalues of E + F and E − F are λj(E) + λj(F ) and

λj(E)− λj(F ), respectively.

Lemma 2.6. For the eigenvalues of circulant matrices B̃, B̃∗, D̃ and D̃∗, we have λ2(B̃
∗) =

λ2(D̃) and λ2(D̃
∗) = λ2(B̃).

Proof. Using the equalities that ρ4 = ρ41 = e2πi∗4/3 = e2πi/3 = ρ1, ρ
2
1 = ρ2, cos(4π/3 − θ) =

cos(2π/3+ θ), cos(2π/3− θ) = cos(4π/3+ θ) where θ ∈ [0, 2π) and Lemma 2.1, we can calculate

the second eigenvalues of circulant matrices B̃, B̃∗, D̃ and D̃∗ as follows.

λ2(B̃) =
∑

1≤k≤3

1

(|rρk−1eiθ − 1|2 + h2)
3
2

ρk−1
2−1

=
1

(|rρ0eiθ − 1|2 + h2)
3
2

+
ρ1

(|rρ1eiθ − 1|2 + h2)
3
2

+
ρ2

(|rρ2eiθ − 1|2 + h2)
3
2

=
1

[1 + h2 + r2 − 2r cos θ]
3
2

+
ρ1

[1 + h2 + r2 − 2r cos(2π3 + θ)]
3
2

+
ρ2

[1 + h2 + r2 − 2r cos(4π3 + θ)]
3
2

,
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λ2(B̃
∗) =

∑
1≤k≤3

1

(|ρk−1 − reiθ|2 + h2)
3
2

ρk−1
2−1

=
1

(|ρ0 − reiθ|2 + h2)
3
2

+
ρ1

(|ρ1 − reiθ|2 + h2)
3
2

+
ρ2

(|ρ2 − reiθ|2 + h2)
3
2

=
1

[1 + h2 + r2 − 2r cos θ]
3
2

+
ρ1

[1 + h2 + r2 − 2r cos(2π3 − θ)]
3
2

+
ρ2

[1 + h2 + r2 − 2r cos(4π3 − θ)]
3
2

,

λ2(D̃) =
∑

1≤k≤3

ρk−1

(|rρk−1eiθ − 1|2 + h2)
3
2

ρk−1
2−1

=
1

(|rρ0eiθ − 1|2 + h2)
3
2

+
ρ2

(|rρ1eiθ − 1|2 + h2)
3
2

+
ρ4

(|rρ2eiθ − 1|2 + h2)
3
2

=
1

[1 + h2 + r2 − 2r cos θ]
3
2

+
ρ2

[1 + h2 + r2 − 2r cos(2π3 + θ)]
3
2

+
ρ4

[1 + h2 + r2 − 2r cos(4π3 + θ)]
3
2

= λ2(B̃
∗)

and

λ2(D̃
∗) =

∑
1≤k≤3

ρk−1

(|ρk−1 − reiθ|2 + h2)
3
2

ρk−1
2−1 =

∑
1≤k≤3

ρk−1
2

(|ρk−1 − reiθ|2 + h2)
3
2

=
1

[1 + h2 + r2 − 2r cos θ]
3
2

+
ρ2

[1 + h2 + r2 − 2r cos(2π3 − θ)]
3
2

+
ρ4

[1 + h2 + r2 − 2r cos(4π3 − θ)]
3
2

=
1

[1 + h2 + r2 − 2r cos θ]
3
2

+
ρ2

[1 + h2 + r2 − 2r cos(4π3 + θ)]
3
2

+
ρ1

[1 + h2 + r2 − 2r cos(2π3 + θ)]
3
2

= λ2(B̃). �

�

Furthermore, we require the following lemmas.

Lemma 2.7. For the eigenvalues of circulant matrices B̃ and D̃, λ3(B̃) = λ2(D̃) and λ̄2(B̃) =

λ3(B̃) where λ̄2(B̃) is the complex conjugate of λ2(B̃).

Proof. Using Lemma 2.1 and the definitions of circulant matrices, we have

λ3(B̃) =
∑

1≤k≤3

ρk−1
2

(|rρk−1eiθ − 1|2 + h2)
3
2

=
1

(|rρ0eiθ − 1|2 + h2)
3
2

+
ρ2

(|rρ1eiθ − 1|2 + h2)
3
2

+
ρ22

(|rρ2eiθ − 1|2 + h2)
3
2

=
1

[1 + h2 + r2 − 2r cos θ]
3
2

+
ρ2

[1 + h2 + r2 − 2r cos(2π3 + θ)]
3
2

+
ρ22

[1 + h2 + r2 − 2r cos(4π3 + θ)]
3
2

.
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From the equalities ρ1ρ1 = ρ2 and ρ2ρ
2
1 = e2πi∗2/3 ∗ e2πi∗2/3 = e2πi∗4/3 = ρ22, we have

λ2(D̃) =
∑

1≤k≤3

ρk−1

(|rρk−1eiθ − 1|2 + h2)
3
2

ρk−1
1

=
1

(|rρ0eiθ − 1|2 + h2)
3
2

+
ρ1ρ1

(|rρ1eiθ − 1|2 + h2)
3
2

+
ρ2ρ

2
1

(|rρ1eiθ − 1|2 + h2)
3
2

=
1

[1 + h2 + r2 − 2r cos θ]
3
2

+
ρ2

[1 + h2 + r2 − 2r cos(2π3 + θ)]
3
2

+
ρ22

[1 + h2 + r2 − 2r cos(4π3 + θ)]
3
2

= λ3(B̃).

Moreover, by performing a comparable calculation, we can derive that

λ̄2(B̃) =
∑

1≤k≤3

ρk−1
1

(|rρk−1eiθ − 1|2 + h2)
3
2

=
∑

1≤k≤3

ρk−1
−1

(|rρk−1eiθ − 1|2 + h2)
3
2

=
∑

1≤k≤3

ρk−1
2

(|rρk−1eiθ − 1|2 + h2)
3
2

= λ3(B̃). �

�

Lemma 2.8. For any θ ∈ (0, 2π), we have λ2(B̃) ̸= reiθλ̄2(B̃), where r > 0.

Proof. From the proof of Lemma 2.7, we have

λ2(B̃) =
∑

1≤k≤3

ρk−1
1

(|rρk−1eiθ − 1|2 + h2)
3
2

=
1

(|rρ0eiθ − 1|2 + h2)
3
2

+
ρ1

(|rρ1eiθ − 1|2 + h2)
3
2

+
ρ2

(|rρ2eiθ − 1|2 + h2)
3
2

=
1

[1 + h2 + r2 − 2r cos θ]
3
2

+
ρ1

[1 + h2 + r2 − 2r cos(2π3 + θ)]
3
2

+
ρ2

[1 + h2 + r2 − 2r cos(4π3 + θ)]
3
2

=
1

[1 + h2 + r2 − 2r cos θ]
3
2

+
− cos π

3 + i sin π
3

[1 + h2 + r2 − 2r cos(2π3 + θ)]
3
2

+
cos π

3 − i sin π
3

[1 + h2 + r2 − 2r cos(4π3 + θ)]
3
2

. (5)

Let λ2(B̃) = µ1 + iµ2, where µ1, µ2 ∈ R. In what follows, we prove λ2(B̃) ̸= reiθλ̄2(B̃) by

contradiction argument, and we assume that λ2(B̃) = reiθλ̄2(B̃) holds. Thus, if θ = π, then

u1 = −ru1 and

cos(
2π

3
+ θ)− cos(

4π

3
+ θ) = 0,

which implies that u1 ̸= 0. So, r = −1, which contradicts with r > 0. So θ ̸= π, and then

θ ∈ (0, π) ∪ (π, 2π). Moreover, we have

cos(
2π

3
+ θ)− cos(

4π

3
+ θ) = −2 sin

π

3
sin θ = −

√
3 sin θ ̸= 0. (6)

�
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Combining (5)–(6) and λ2(B̃) = µ1 + iµ2, where µ1, µ2 ∈ R, we have µ2 ̸= 0. Thus, λ2(B̃) ̸= 0.

On the one hand, by λ2(B̃) = µ1 + iµ2 ̸= 0 and λ2(B̃) = reiθλ̄2(B̃), where r > 0, we have |λ2(B̃)

λ̄2(B̃)
| = |µ1+iµ2

µ1−iµ2
| = r,

u21 + u22 ̸= 0.

Hence,

r = |(µ1 + iµ2)
2

u21 + u22
| = |(µ2

1 − µ2
2) + 2iu1u2|

u21 + u22
=

√
(µ2

1 − µ2
2)

2 + 4µ2
1µ

2
2

u21 + u22
=

u21 + u22
u21 + u22

= 1.

On the other hand, with the aid of θ ∈ (0, π) ∪ (π, 2π), we have sin θ ̸= 0. Then, employing

(5)–(6) and λ2(B̃) = µ1 + iµ2, where µ1, µ2 ∈ R, we conclude that if sin θ > 0, then cos(2π3 + θ) < cos(4π3 + θ), which implies that µ2 < 0;

if sin θ < 0, then cos(2π3 + θ) > cos(4π3 + θ), which implies that µ2 > 0.
(7)

Note that λ2(B̃) = reiθλ̄2(B̃), then thanks to direct computation, there is

µ1 + µ2i = r(cos θ + i sin θ)(µ1 − µ2i) = r(µ1 cos θ + µ2 sin θ) + r(µ1 sin θ − µ2 cos θ)i.

Combining r = 1, one computes that µ1 cos θ + µ2 sin θ = µ1,

µ1 sin θ − µ2 cos θ = µ2,
(8)

which implies that  µ1(1− cos θ) = µ2 sin θ,

µ2(1 + cos θ) = µ1 sin θ.
(9)

In the following, we will demonstrate that neither of the two cases in (7) can occur.

Case 1. We assume that sin θ > 0 holds. In this case, by the first part of (7), there is µ2 < 0.

Then, inserting sin θ > 0 and µ2 < 0 into the first part of (9), we have µ1(1− cos θ) < 0. Thus,

it follows from θ ∈ (0, π) ∪ (π, 2π) that µ1 < 0. In fact, inserting sin θ > 0 into (6), we have

cos(2π/3 + θ) < cos(4π/3 + θ). Combining λ2(B̃) = µ1 + iµ2 and (5), we have µ1 > 0, which

contradicts with µ1 < 0. Hence, we deduce a contradiction.

Case 2. We assume that sin θ < 0 holds. In this case, combining θ ∈ (0, π) ∪ (π, 2π) and the

second part of (7), we have π < θ < 2π, cos(2π/3 + θ) > cos(4π/3 + θ) and u2 > 0. Combining

sin θ < 0, π < θ < 2π and the first part of (9), one computes that u1 < 0. Next, we divide the

procedure of Case 2 into the following two parts.

Firstly, when cos(2π/3 + θ) ≤ 0, note that

cos(
2π

3
+ θ) + cos(

4π

3
+ θ) = 2 cos

π

3
cos(π + θ) = − cos θ,

and cos(4π/3 + θ) < cos(2π/3 + θ) ≤ 0, one computes that cos θ > 0. Inserting cos(4π/3 + θ) <

cos(2π/3 + θ) ≤ 0 and cos θ > 0 into (5), we have u1 > 0, which contradicts with u1 < 0.

Secondly, when cos(2π/3+θ) > 0, using π < θ < 2π, we have 5π/3 < 2π/3+θ < 5π/2, which

implies that π < θ < 11π/6. Then, employing (9) along with µ1 < 0, µ2 > 0 and π < θ < 11π/6,

it is not difficult to verify that

1− cos θ

1 + cos θ
=

u22
u21

. (10)
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On the one hand, employing (8), direct computation shows us that

u1u2 cos θ + u22 sin θ = u21 sin θ − u1u2 cos θ,

which gives us information that

2u1u2 cos θ = (u21 − u22) sin θ. (11)

Then, inserting µ1 < 0, µ2 > 0, sin θ < 0 and cos θ < 0 into (11), one computes that u22 > u21,

and then µ2 > −µ1 > 0. Combining the second part of (9), there is

0 = µ2(1 + cos θ)− µ1 sin θ > −u1(1 + cos θ + sin θ) = −u1[1 +
√
2 cos(θ − π

4
)]. (12)

On the other hand, inserting u22 > u21 and π < θ < 11π/6 into (10), we have cos θ < 0, which

implies that π < θ < 3π/2, and then 3π/4 < θ − π/4 < 5π/4. Hence, cos(θ − π/4)) > −
√
2/2.

Then, with −u1 > 0 and the aid of (12), there is

0 = µ2(1 + cos θ)− µ1 sin θ > −u1(1 + cos θ + sin θ) > −u1[1 +
√
2 cos(θ − π

4
)] > 0,

and it is impossible. Therefore, Cases 1-2 cannot happen. Thus, for any θ ∈ (0, 2π) and any

r > 0, λ2(B̃) ̸= reiθλ̄2(B̃) is impossible.

By now, we have completed the proof of Lemma 2.8. �

3. Proof of Theorem 1.1

From (1) and (3), it follows that the spatial central configurations satisfy the following equa-

tions for any k ∈ {1, 2, 3}.

∑
j ̸=k

1≤j≤3

(ρj−ρk, 0)mjmk

|ρj−ρk|3
+

∑
1≤j≤3

(rρje
iθ−ρk, h)m3+jmk

(|rρjeiθ−ρk|2+h2)
3
2

= −λmk(ρk − c0, −h0),

∑
1≤j≤3

(ρj−rρ3+ke
iθ,−h)

(|ρj−rρ3+keiθ|2+h2)
3
2
mjm3+k +

∑
j ̸=k

1≤j≤3

(rρ3+je
iθ−rρ3+ke

iθ, 0)

(|rρ3+jeiθ−rρ3+keiθ|2+0)
3
2
m3+jm3+k

= −λm3+k(rρ3+ke
iθ − c0, h− h0),

where the center of masses x0 := (c0, h0). Then, employing ρ3±j = ρ±j with j ∈ {1, 2, 3}, we
have

∑
j ̸=k

1≤j≤3

(ρj−k−1, 0)mj

|ρj−k−1|3 +
∑

1≤j≤3

(rρj−ke
iθ−1, h)m3+j

(|rρj−keiθ−1|2+h2)
3
2
= −λ(1− c0ρ−k, −h0),

∑
1≤j≤3

(ρj−k−reiθ,−h)

(|ρj−k−reiθ|2+h2)
3
2
mj +

eiθ

r2
∑
j ̸=k

1≤j≤3

(ρj−k−1, 0)

|ρj−k−1|3 m3+j = −λ(reiθ − c0ρ−k, h− h0).
(13)

After combining (4) and (13), using the definitions of matrices A1, B̃, B̃∗, D̃, and D̃∗, we

have  −A1m+ (reiθD̃ − B̃)M = −λν1 + c0λν3,

(D̃∗ − reiθB̃∗)m− eiθ

r2
A1M = −λreiθν1 + c0λν3,

(14)

where m̃ = (m1,m2,m3)
T and M = (m4,m5,m6)

T .

According to Lemma 2.2, there exist certain constants a1, a2, a3, b1, b2 and b3 such that m̃ = a1ν1 + a2ν2 + a3ν3,

M = b1ν1 + b2ν2 + b3ν3.
(15)
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Using (14) and (15), we can conclude that
−A1(

∑
1≤j≤3

ajνj) + (reiθD̃ − B̃)(
∑

1≤j≤3
bjνj) = −λν1 − c0λν3,

(D̃∗ − reiθB̃∗)(
∑

1≤j≤3
ajνj)− eiθ

r2
A1(

∑
1≤j≤3

bjνj) = −λreiθν1 + c0λν3.
(16)

Employing (16) and Lemmas 2.1–2.3, it becomes evident that −3λ2(A1)a2 + 3λ2(re
iθD̃ − B̃)b2 = 0,

3λ2(D̃
∗ − reiθB̃∗)a2 − 3 eiθ

r2
λ2(A1)b2 = 0.

In addition, using Lemmas 2.4–2.5, we can show that [λ2(re
iθD̃)− λ2(B̃)]b2 = 0,

[λ2(D̃
∗)− λ2(re

iθB̃∗)]a2 = 0.
(17)

By the form of eigenvalues λj in Lemma 2.1, we have λ2(re
iθD̃) = reiθλ2(D̃) and λ(reiθB̃) =

reiθλ2(B̃). Then, thanks to Lemma 2.6 and (17), we have [reiθλ2(D̃)− λ2(B̃)]b2 = 0,

[λ2(B̃)− reiθλ2(D̃)]a2 = 0.
(18)

Next, we will now break down the remaining proof of Theorem 1.1 into three separate cases.

Case 3. a2 ̸= 0 and b2 ̸= 0.

Due to Lemma 2.7, we have λ2(D̃) = λ3(B̃) = λ̄2(B̃). Then, it follows from the second

equation of (18) and a2 ̸= 0 that λ2(B̃) = reiθλ2(D̃) = reiθλ̄2(B̃). On the other hand, if

θ ∈ (0, 2π), then Lemma 2.8 shows us that λ2(B̃) ̸= reiθλ̄2(B̃), which contradicts with λ2(B̃) =

reiθλ̄2(B̃), So θ = 0. Then, it follows from h > 0 and the Theorem 1.2 of page 4822 in [18] that

m1 = m2 = m3 and m4 = m5 = m6.

Case 4. b2 = 0. In this case, from the second equation of (15), we have M = b1ν1 + b3ν3.

Assume that  b1 = b
(1)
1 + ib

(2)
1 , where b

(1)
1 ∈ R and b

(2)
1 ∈ R,

b3 = b
(1)
3 + ib

(2)
3 , where b

(1)
3 ∈ R and b

(2)
3 ∈ R.

(19)

Then, combining (19), m̃ = (m1,m2,m3)
T ∈ (R,R,R)T , M = (m4,m5,m6)

T ∈ (R,R,R)T ,
ν1 = (1, 1, 1)T and ν3 = (ρ2, ρ4, ρ6)

T = (ρ2, ρ1, ρ3)
T , we have

(b
(1)
1 + ib

(2)
1 ) + (b

(1)
3 + ib

(2)
3 )ρ2 ∈ R,

(b
(1)
1 + ib

(2)
1 ) + (b

(1)
3 + ib

(2)
3 )ρ1 ∈ R,

(b
(1)
1 + ib

(2)
1 ) + (b

(1)
3 + ib

(2)
3 )ρ3 ∈ R.

Therefore, 
b
(2)
1 −

√
3
2 b

(1)
3 − 1

2b
(2)
3 = 0,

b
(2)
1 +

√
3
2 b

(1)
3 − 1

2b
(2)
3 = 0,

b
(2)
1 + b

(2)
3 = 0,

(20)

and we can deduce from (20) that b
(2)
1 = b

(1)
3 = b

(2)
3 = 0. Therefore, b1 = b

(1)
1 ∈ R and b3 = 0.

This implies that when b2 = 0, m4 = m5 = m6.
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Next, for the case where b2 = 0, we will prove that m1 = m2 = m3.

On one hand, if a2 = 0, then according to (15), m̃ = a1ν1 + a3ν3. Similar to the above

procedure of M = b1ν1 + b3ν3, we obtain m1 = m2 = m3.

On the other hand, if a2 ̸= 0, then by the second equation of (18), we can conclude that

λ2(B̃) = reiθλ2(D̃), then using Lemma 2.7, we obtain λ2(B̃) = reiθλ̄2(B̃). Thus, by the same

procedure used in Case 3, we deduce that m1 = m2 = m3 and m4 = m5 = m6. Therefore, we

complete the proof of Case 4.

Case 5. a2 = 0. In this case, we can combine the first part of (15) to obtain m̃ = a1ν1+a3ν3,

and following the proof of m4 = m5 = m6 in Case 4, we can conclude that m1 = m2 = m3.

In the case where a2 = 0, we will prove that m4 = m5 = m6 as the following.

On one hand, if b2 = 0, then from the first part of (15), we have M = b1ν1 + b3ν3. Therefore,

m4 = m5 = m6.

On the other hand, if b2 ̸= 0, then by Lemma 2.7 and the first equation of (18), we have

λ2(B̃) = reiθλ2(D̃) = reiθλ3(B̃) = reiθλ̄2(B̃). Then, similar to the procedure of Case 3, we have

m1 = m2 = m3 and m4 = m5 = m6, which implies that the proof of Case 5 is completed. �

4. Conclusions

It is well-known that for the Lagrange equilateral-triangle central configuration of Newtonian

3-body problem formed by an equilateral triangle, the masses located at the vertices of the

equilateral triangle may not be equal. But for planar twisted configurations formed by two

concentric equilateral triangles with any twist angle θ, the authors of the paper [24] found that

if the masses in each separate equilateral triangle are not equal, then the six masses cannot

form a central configuration. Subsequently, for the spatial twisted configurations formed by two

parallel equilateral triangles, when the twist angle is θ = 0, Theorem 1.2 of [18] implies that

there is no central configuration with unequal masses located at the vertices of each separate

equilateral triangle. Now, we prove that if θ ∈ [0, 2π], then there is no spatial twisted central

configuration with unequal masses located at the vertices of each separate equilateral triangle.
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