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SPATIAL TWISTED CENTRAL CONFIGURATIONS OF NEWTONIAN
6-BODY PROBLEM

L. DING!, G.W. REN!, Z.L. YANG!, F.Y. L1?

ABSTRACT. By employing a simple method that relies on known results for the circulant matrix
Ay, and by analyzing the eigenvalues and eigenvectors of four circulant matrices (B, B*, D and
D*), in the twisted configurations of the spatial Newtonian 6-body problem formed by two
parallel equilateral triangles with a distance h > 0, we demonstrate that when the twist angle
0 € [0,27), there is no spatial twisted central configuration with unequal masses located at the
vertices of each separate equilateral triangle.
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1. INTRODUCTION AND MAIN RESULT

Given n positive masses my, with positions z, € RY, k=1,...,n and d € ZT, we consider the
configuration space (R?)"\ A,,, where

Np={x=(z1,22, ..., 2n) |xj =21, 1 < j#k <n}.

A central configuration refers to a specific configuration of n masses, where the acceleration
vector of each mass is a scalar multiple of the corresponding position vector, shared by all the
masses. To be more precise, the definition of a central configuration is given as follows.

Definition 1.1. [11, Page 109] We say a configuration q¢ = (q1, g2, - -, ¢n) € (RH™M\ A, is a
central configuration at some moment if there exists a constant X € R such that
> %j_qu)z—Amk(%—l’o), k=1,2,...,n, (1)
= g —al
1<G<n

where the center of masses is o = [ < M)/ D 1<pcn Mk

The study of the Newtonian n-body problem places great importance on central configura-
tions. These configurations play a significant role in the analysis of collision orbits, expanding
gravitational systems, and the limitations that affect the configurations assumed by the bounded
motion of the n-body problem [17, 21].
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Figure 1. Planar N-body problem.
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Figure 2. Planar 2N-body problem with twisted angle

The Newtonian 3-body problem has a well-known central configuration where three masses are
positioned at the vertices of a regular 3-polygon. In 1772, Lagrange [9] discovered the Lagrange
equilateral-triangle central configuration. For n = 4, in [12] the authors made an intriguing
finding stating that if four masses are located at the vertices of a regular 4-polygon, they must
be equal in weight, which is different from the case of n = 3. In [20] the author extended the
result to n = 5. In 1985, the authors of the paper [16] studied the case where n = N > 4, and
the masses were located at the vertices of a regular N-polygon. They proved the famous result
that if the N masses form a central configuration, then the N masses must be equal (refer to
Fig.1). Recently, in [1], the authors extended the result of the paper [16] to planar Newtonian
(N+1)-body problem, and in [19], the author extended the result given in [16] from Newtonian
potential to general homogeneous potentials.

Assume that the masses m1, ..., my are located at the vertices of one regular N-polygon; the
particles my41, ..., may are located at the vertices of the other regular N-polygon (see Fig.3):

{ =, 0), I=1,...,N,

; 2
qs = (rpse®®, h), s=14+N=N+1,...,.2N, 6¢c[0,2r), h>0, @)
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where p; = €% () = 2l7/N) is the I-th root of the N-roots of unity. Then, |p| = |ps| = 1, and
we call r and h the ratio of the sizes of the two N-polygons and the distance between the two
paralleled regular N-polygons in R?, respectively.

In 2003, the authors of [24] extended the results given in [16] to planar twisted central con-
figurations of Newtonian 2/N-body problem (n = 2N > 6), which was formed by two concentric
regular N-polygons with any twist angle 8 and h = 0 (see Fig.2). For this planar central configu-
ration, they showed that the masses in each separate regular N-polygon are equal, and the main
tool is based on the analysis of eigenvalues and eigenvectors of the corresponding circulant ma-
trix. For spatial twisted central configurations of Newtonian 2N-body problem (n = 2N > 6),
since the distance h > 0, it is very difficult to analyze the eigenvalues and eigenvectors of the
corresponding circulant matrix.

In 2012, the authors of [23] studied spatial twisted central configurations involving two parallel
regular N-polygons with distance h > 0 (see Fig.3), and under the assumption that the masses
in each separate regular N-polygon are equal, they derived that the twist angles must be § = 0
or # = w/N. In 2015, in order to extend the results given in [24] to spatial twisted central
configurations of Newtonian 2N-body problem (see Fig.3), in [18] the authors introduced a
new circulant matrix A, with r > 0, which was to obtain the relationship for eigenvalues
of the circulant matrix A, when the twist angle was # = 0. They demonstrated that for
E=1,2,...,N, A\ >0if 0 <r <1and A <0ifr>1, where r represents the ratio between
the radii of the two regular N-polygons. Furthermore, they obtained that for the spatial twisted
central configurations, if the twist angle § = 0, then the masses in each separate regular N-
polygon are equal. However, their method only applies when the twist angle is § = 0, and it
doesn’t work for twist angles 6 € (0,27). For more details in this direction, one can refer to
[2,3,4,5,6,7, 8,10, 13, 15, 22].

ZA

Figure 3. Spatial 2N-body problem with twisted angle 6

It is important to note that in the Lagrange equilateral-triangle central configuration, where
three masses are positioned at the vertices of an equilateral triangle, the three masses are not
necessarily equal. Additionally, for the twisted configurations of the spatial Newtonian 6-body
problem, which consist of two parallel equilateral triangles with a distance h > 0, when the twist
angle § = 0, if the masses at the vertices of each triangle are unequal, then these six masses
cannot form a central configuration. This leads to a natural question:
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e In the spatial Newtonian 6-body problem formed by two parallel equilateral triangles
with a distance h > 0, when the twist angles 6 € (0, 27), does there exist a configuration
with unequal masses located at the vertices of each separate equilateral triangle, such
that the six masses form a spatial twisted central configuration?

In this paper, by utilizing the relationship between the eigenvalues of four introduced cir-
culant matrices (B, B*, D, and [?*) and some known results of eigenvalues and eigenvec-
tors of the circulant matrix A;, we can answer the question. In what follows, for six masses
(my, ma, m3, ma, ms, mg) € (RT)° with positions ¢ € (q1,¢2, 93,44, g5, 6) € (R*)°\Ag, in (2), if
we set N =3 and h > 0, then (2) is translated into

2w

a = (p1,0) = (e',0) = (73 %,0), | =1,2,3,
(3)

2sm

qs = (rpse?, h) = (re!@+0)  p) = (rei(Tw), h), 0 €[0,2m), r >0, h >0, s=4,5,6.

Then, our main result is described as follows.

Theorem 1.1. Let the configuration ¢ = (q1,q2,- -+ ,q6) be defined as in (3). If q is a spatial
twisted central configuration for the mass vector m = (my,ma,--- ,mg), then m; = ma = ms3
and mg = ms = Mmg.

Employing Theorem 1.1, we have

Corollary 1.1. For the configuration q in (3) and any 0 € [0,2m), there is no configuration
with unequal masses located at the vertices of each separate equilateral triangle, such that the siz
masses form a spatial twisted central configuration.

2. PRELIMINARIES AND SOME USEFUL LEMMAS

We prove our main result using circulant matrices, and the definition of a circulant matrix is
as follows.
Definition 2.1. [14, Pages 65-66] A matriz C' = (¢ji)3x3 (1 < j, k < 3) is circulant if ¢j ), =
cj—1,k—1 where cjo = cj3 and co = c3 .

We have the following lemmas regarding the properties of any circulant matrix.

Lemma 2.1. [16, Page 303] Every 3 x 3 circulant matriz has the same forms of the eigenvalues
Aj and the corresponding eigenvectors v, more precisely,

/\j = Z Cl,kp?:lla Vi = (pj—lap?—hp?—l)T: J=123. (4)
1<k<3

Lemma 2.2. [1, Proposition 2.2] The eigenvectors v; with j = 1,2,3 form a basis of C3.

Lemma 2.3. [14, Page 65] Let ()7 be the conjugate transpose of vy. Then

_ 3, k= _
T ) ) T
(o) v; = { 0 k) (P2, pa, ps)(73)" = 3.
Let matrices A1, B, B*, D and D* be defined as follows.
1—p1 1—p2
B T
_ —p2 —p1
A=t e O mE |
1—p1 1—po

1—p1[®  [1=p2]3
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1

1

. 3
(Irpoci?—1[2+42)7
1

(Irprei?=1P+h?)3
1

(Irpaci®=1P+h?)3
1

B= : 7
(Irpaci®=1P+h?)3
1

. 3
(Irpoci®—1[2-+h2)3
1

. 3
(Irprei?=1P+h?)3
1

. 3
(Iprei?=12+h%)3

1

. 3
(Irpaci?=1p2+h%)3

1

. 3
(Irpoci?—112+h?)3

1

Nl

(Ipo—rei®|2+h2)
1

Nolco|

(Ipr—rei2+h2)
1

Nolco|

(Ipa—rei2+h2)
1

B* =

NI

(Ipa—rei|2+h2)
1

NI

(Ipo—rei® 2+12)

[

(Ip1=rei® 2412)

. 3
(I —re®?+h?)2

£0o

. 3
(Ipa=rei®?+h2) %

P1

. 3
(Ipo—rei?>+h2) %

p2

. 3
(Irpoei?—1[2+h?)3
P2

; 3
(Irpre??—112+h2)2
PO

. 3
(Irpaet®=1[2+h?)3
p1

= . 3
D=1 Grpeo-ipm
P1

(Irpoei?=1+h?)3
P2

; 3
(Irpret?—1[24h2)2
PO

. 3
(Irp1et®—1]24-h2)2
and

po

) 3
(Irpaci9—1]2-+h2)3

p1

. 3
(Irpoci®—1[2-+h2)3

p2

. 3
(Ipo=rei®[>+h2)%

. 3
(Ior—rei®|2+h2)%
PO

. 3
(Ipa=re??P+h?)3
p1

~ p2
D* = : 3
(Io2—rei®|2+h2)2

£1

. 3
(Ioo—rei®|2+h2)2
P2

. 3
(lor—rei®|2+h2)2
PO

. 3
(I —rei?2+h2)3

Here, by the definition of p;, it’s not hard to see that py = e

. 3
(Ipa—rei?2+h2)3

. 3
(Ipo—rei?2+h2)3

2mix0/3

:1aP1:€
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omix1/3 _ 2mi/3

and py = €2™*2/3 = ¢47i/3 Tt ig easy to verify that any one of A, B, B*, D and D* is a circulant
matrix. Moreover, for the five matrices, we have the following lemmas.

Lemma 2.4. [16, Corollary] For the eigenvalues of circulant matriz Ay, we have Aa(A1) = 0.

Lemma 2.5. [24, Lemma 2.3] Let E, F be any two circulant matrices, then matrices E+ F and
E — F are circulant. Moreover, the eigenvalues of E 4+ F and E — F are \j(E) + \;(F) and
Nj(E) — Xj(F), respectively.

Lemma 2.6. For the eigenvalues of circulant matrices B, B*, D and D*, we have )\Q(B*) =
)\Q(D) and )\Q(D*) = /\Q(B)

2mixd /3 2mi/3

Proof. Using the equalities that py = pf = e =e = p1, p1 = pa, cos(4r/3 — 0) =
cos(2m/3+6), cos(2m/3 —0) = cos(4m/3+6) where 6 € [0,27) and Lemma 2.1, we can calculate
the second eigenvalues of circulant matrices B, B*, D and D* as follows.
~ 1
X(B) = ). : 50571
15pes (Irpe—1€? — 112 4- h2)2

_ 1 n P1 n P2

(Jrpoc® — 12 +h2)%  (lrprei® — 12+ h2)2  (jrpzei® — 1|2 + h2)3
_ 1 4 P1

[1+h2+r2—2r0030]% [1+h2+r2—27“cos(2§+0)]%

+ P2
[1+h2 + 12— 2rcos(4F + 02

I
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By 1 k-1
Aa(B*) 13230mF1—raﬂ2+h%3%1
_ 1 n P1 n P2
(oo = re®2 +12)2  (loy = re®2+52)5 (oo = ret®[2 4 12)
_ 1 4 P1
[1—|—h2—|—r2—2rcose]% [1—l—h2—|—r2—27‘cos(2§—9)]%
- P T
[1+h2+ 12— 2rcos(4 — 0)]2
- Pk—1 k—1
P o ST L
— 1 4 P2 4 Pa '
(Irpoe’® =12+ 12)2  (jrpret® =124+ 52)3  (jrppe®® — 12 + h?)2
_ 1 + P2
[14h2+ 72— 2rcosf]? [1+h2+7"2—27"cos(2%+0)]%
.~ ;= Xa(B)
[1 4 h2+ 72 — 2rcos(3F + 0))2
and
Y Pk—1 k—1 Pg_l
S 1<;<3 (Ipr—1 — rei®|2 + h2)3 P2t s (et — rei®2 4 h2)2
_ 1 + P2
[1+h2+r2—2r0050]% [1+h2+r2—2rcos(2§—9)]%
+ P4
[1+ h2+ 72 — 2rcos(4F — 0)]%
_ 1 + P2
[1+h2—|—7“2—27"c059]% [1+h2+r2—2rcos(4§+9)]%

P1 ~
4 =X(B). O
[1+h%+7r2 —2rcos(ZF + 0)]2

Furthermore, we require the following lemmas.

Lemma 2.7. For the eigenvalues of circulant matrices B and D, \3(B) = \y(D) and Xo(B) =
A\3(B) where \o(B) is the complex conjugate of Ao(B).

Proof. Using Lemma 2.1 and the definitions of circulant matrices, we have

B Pl
A3(B) = i0 - 2 2\2
15hes (Irpk—1€® — 1|2 + h?)2
_ 1 P2 p3
- . 3 —"_ . 3 —"_ . 3
(rpoe® — 12+ 1)F  (rpre® — 12+ h2)3  (jrpaei® — 112 + h2)3
_ 1 4 P2
[1+h2+r2—2rcos0]% [1+h2+r2—2rcos(2%+9)]%
2
P2

+ 2 4,2 2l 5
(14 h? 472 — 2rcos(5 + 0)]2
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2mix2/3 o e2m’*2/3 — e27ri*4/3

From the equalities p1p1 = pe and pop? = e = p3, we have

o Pk—1 k—1
X(D) = i0 TN
15hes (Irpp—1e" — 1|2 + h?)2
B 1 P1P1 P20
- . 3 + . 3 + . 3
(rpoe? 1P+ )T (e —1F 123 (rpne — 1+ 12)3
_ 1 + P2
[1+h2+T2—2TCOSH]% [1+h2+r2—2rcos(2%+0)]%
2
) 5

+ = \3(B).
[1+R2+ 12— 2rcos(4 + 9)]%

Moreover, by performing a comparable calculation, we can derive that

k—1 k—1
Ma(B) = A RRTTIrY
15h<s (Irpp—1e® =112+ h2)2 5275 ([rpg—1€” — 1] + h?)2
k—1
_ ,9”2 ——— = N(B). O
1<z (Irpr—1€? — 1 + h?)2
([l
Lemma 2.8. For any 0 € (0,27), we have \y(B) # re' A\o(B), where r > 0.
Proof. From the proof of Lemma 2.7, we have
k—1
- P 1 P1
)‘Z(B) = ; ! 3 — ; 3 + ; 3
Lt (ronre® — 124123 (rpoe® — 12+ h0)F  (rpse® — 112 + h2)3
+ P2
(Irpae’® — 12 4 12)
_ 1 + P1
[1+h2+r2—2r0059]% [1+h2+r2—2rcos(2§+9)]g
+ P2
3
[1+h2+ 12— 2rcos(4T +0))2
_ 1 N —cos§ +ising
3 3
L4+ h24+1r2—2rcosf]2  [L+h2+7r2—2rcos(3F +0))2
cost —isin %
+ : > - (5)
[1+ h2+ 72— 2rcos(3F + 0)]2

Let )\2(3) = p1 + ipe, where pi, uo € R. In what follows, we prove )\Q(B) + reiej\g(B) by
contradiction argument, and we assume that Ao(B) = re®Ao(B) holds. Thus, if § = 7, then
u; = —ruy and

2 4
cos(g7r +6)— cos(g +6)=0,

which implies that u; # 0. So, r = —1, which contradicts with » > 0. So 6 # m, and then
6 € (0,7) U (m,2m). Moreover, we have

2 4
cos(g +0) — cos(?7r +6) = —2sin g sinf = —v/3sin 6 # 0. (6)
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Combining (5)—(6) and A\y(B) = p1 + ipo, where p1, o € R, we have pg # 0. Thus, Ao(B) # 0.
On the one hand, by A\o(B) = p1 + iug # 0 and \o(B) = re'? A\o(B), where r > 0, we have

|>\2(1§’)| _ |u1+iu2‘ —
X2(B) p1—ip2 )
u? +u3 # 0.
Hence,
_ b i) i — ) + 2iwua _ V0t = p3)’ +4pied _ ui+ud
u? + ul u? + u3 u? + u3 u? + ul '

On the other hand, with the aid of # € (0,7) U (m,27), we have sinf # 0. Then, employing
(5)—(6) and A\o(B) = p1 + iue, where uq, u2 € R, we conclude that

if sinf >0, then cos(& +6) < cos(%7r +6), which implies that ps < 0;

(7)
if sinfd <0, then (:os(%7r +6) > cos(%7r +60), which implies that ug > 0.
Note that \y(B) = re'Ay(B), then thanks to direct computation, there is
p1 + poi = r(cos@ + isin)(uy — poi) = r(uy cosd + pgsin@) + r(uq sin — pa cos 6)i.
Combining r = 1, one computes that
1 cosd + posind = pq,
| (3)
(1 8in @ — ps cos 6 = o,
which implies that
w1 (1 — cosf) = pgsind,
(9)

pa(l + cosf) = pg siné.

In the following, we will demonstrate that neither of the two cases in (7) can occur.

Case 1. We assume that sinf > 0 holds. In this case, by the first part of (7), there is p2 < 0.
Then, inserting sin# > 0 and py < 0 into the first part of (9), we have uj(1 — cosf) < 0. Thus,
it follows from 6 € (0,7) U (m,27) that uy < 0. In fact, inserting siné > 0 into (6), we have
cos(2m/3 4 0) < cos(4m/3 + #). Combining \o(B) = py + ipz and (5), we have pg > 0, which
contradicts with 1 < 0. Hence, we deduce a contradiction.

Case 2. We assume that sinf < 0 holds. In this case, combining 6 € (0,7) U (7, 27) and the
second part of (7), we have m < 6 < 27, cos(2m/3 + ) > cos(4nw/3 + 6) and ug > 0. Combining
sinf < 0, 7 < 6 < 27 and the first part of (9), one computes that u; < 0. Next, we divide the
procedure of Case 2 into the following two parts.

Firstly, when cos(27/3 + #) < 0, note that

cos(%r +0)+ cos(% +6) = 2cos g cos(m + ) = — cos 0,
and cos(47/3 4+ 0) < cos(27/3 + ) < 0, one computes that cos@ > 0. Inserting cos(47/3 4 0) <
cos(2m/3 +6) < 0 and cosé > 0 into (5), we have u; > 0, which contradicts with u; < 0.

Secondly, when cos(27/3+6) > 0, using 7 < 6 < 27, we have 57/3 < 27/3+0 < 57/2, which
implies that m < 6 < 117 /6. Then, employing (9) along with ©; <0, yu2 > 0and 7 < 6 < 117/6,
it is not difficult to verify that

1—cosf w3

_ Uy 10
1+cosf w2 (10)
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On the one hand, employing (8), direct computation shows us that
u1Ug cos f + u% sinf = u% sinf — uqug cos b,
which gives us information that
2uqug cos @ = (uf — u3)sin 6. (11)

Then, inserting 1 < 0, pz > 0, sinf < 0 and cosf < 0 into (11), one computes that u3 > u?,
and then po > —py > 0. Combining the second part of (9), there is

0= p2(1 +cosf) — g sin® > —ug (1 + cos O +sin ) = —ug[1 + V2 cos(6 — %)] (12)

On the other hand, inserting u3 > u} and 7 < 6 < 117/6 into (10), we have cos < 0, which
implies that 7 < 6 < 37/2, and then 37/4 < § — 7/4 < 5m/4. Hence, cos(d — m/4)) > —/2/2.
Then, with —u; > 0 and the aid of (12), there is

0= p2(1 4 cosf) — pysinh > —uy(1 4 cosf +sinf) > —uy[1 + V2 cos(d — %)] >0,

and it is impossible. Therefore, Cases 1-2 cannot happen. Thus, for any 0 € (0,27) and any
r >0, A\o(B) # re®X\o(B) is impossible.
By now, we have completed the proof of Lemma 2.8. [J

3. PROOF OF THEOREM 1.1

From (1) and (3), it follows that the spatial central configurations satisfy the following equa-
tions for any k € {1, 2, 3}.

(pj—pK, 0)mjmy (rpjet®—pg, h)msqymy _
Z . ‘p._pk|3ji + ! ” 2 ;5 = —)\mk(pk — Cp, —ho),
i#k J 1<j<3  (Irpje??—pr|?+h?)2
1<5<3

> (pj—rpsyke'®, —h)

(rps+je’®—rpsixe’,0)
: mimay g+ D . 5 N34 M3 4k
(Ipj=rp3+ke®|2+h?)

izt (|rpsyje®—rp3pei®|2+0)2
1<5<3

3
2
1<5<3

= —Amgyi(rpsxe® — co, h — ho),

where the center of masses xg := (co, ho). Then, employing ps+; = p+; with j € {1,2,3}, we
have

D (pj—k—1,0)m; + 3 (rpj—ke—1,h)ma; = —A(1 = cop—p, —ho),

. . —1 3 - 3
7k lpj—k—1] 15743 (Irpj—ket®—112+h2) 3
1<<3 , )
Cibmre®h) o o)
gt e L i ey = —A(re” = copg, h—ho).
1<j<3 (lpjfkfre ‘ + ) ]#k
o 1<5<3

After combining (4) and (13), using the definitions of matrices A, B, B*, D, and D*, we
have

—Aym + (re?D — BYM = — Ay + coAws,

N - . . (14)
(D* —re? B*)m — %)AlM = —Arevy + coAvs,
where m = (my, ma, m3)’ and M = (mg, ms, me)7.
According to Lemma 2.2, there exist certain constants ai, as, ag, b1, by and bg such that
ﬁ% = a1 + asvy + asrs,
(15)

M = bivy + bava + bsvs.
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Using (14) and (15), we can conclude that
—Al( Z ajyj) + (’I“eieb — B)( Z bjl/j) = — A1 — oAV,
1<5<3 1<5<3

(D" = re®B)( ¥ awy) = A S bwy) = —Arelu + cohvs.
1<5<3 1<5<3

(16)

Employing (16) and Lemmas 2.1-2.3, it becomes evident that
—3)\2(141)&2 + 3)\2(T€i9D — B)bg =0,

3)\2([)* — reiGB*)ag — 3%)\2(141)()2 =0.

In addition, using Lemmas 2.4-2.5, we can show that

[)\Q(Teieb) — AQ(B)][)Q = 0,

~ . (17)

[A2(D*) — Xo(re? B*)]ag = 0.
By the form of eigenvalues )\; in Lemma 2.1, we have Ag(re?? D) = re®\y(D) and A(re? B) =
re® \o(B). Then, thanks to Lemma 2.6 and (17), we have

[’r‘eie)\z(b) - )\2(3)]1)2 == 0,

18
[)\Q(B) — reie)\g(b)]ag =0. ( )

Next, we will now break down the remaining proof of Theorem 1.1 into three separate cases.

Case 3. ay # 0 and by # 0.

Due to Lemma 2.7, we have A\2(D) = A3(B) = Aa(B). Then, it follows from the second
equation of (18) and az # 0 that \o(B) = re®Xo(D) = re®X2(B). On the other hand, if
6 € (0,27), then Lemma 2.8 shows us that Ao(B) # e’ \2(B), which contradicts with Ao(B) =
re’®Xo(B), So § = 0. Then, it follows from h > 0 and the Theorem 1.2 of page 4822 in [18] that
mi1 = mg = m3 and my = ms = Mg.

Case 4. by = 0. In this case, from the second equation of (15), we have M = by + b3vs.

Assume that

by = bgl) + ib?), where bgl) € R and ng) e R,
(19)
by = b\ + ibl?, where b{") € R and b € R.
Then, combining (19), m = (my,m2,m3)T € (R,R,R)T, M = (mg,ms,me)T € (R,R,R)T,
v1 = (1,1,1)T and v3 = (p2, pa, ps)” = (p2, p1,p3)", we have

(b + ) + (0 + b € B,
@) + i) + 0 + i )pr € R,
(07 + i) + (05 + b )ps € R.
Therefore,
b =g -5 =0,
R .
b+ =0,

and we can deduce from (20) that bgz) = bgl) = béQ) = 0. Therefore, by = bgl) € R and b3 = 0.
This implies that when by = 0, my = ms = mg.
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Next, for the case where by = 0, we will prove that mq; = my = ms.

On one hand, if ap = 0, then according to (15), m = ajv; + asvs. Similar to the above
procedure of M = by + bsvs, we obtain m; = mgy = ms.

On the other hand, if ay # 0, then by the second equation of (18), we can conclude that
Ao(B) = re\y(D), then using Lemma 2.7, we obtain Ag(B) = re?Ay(B). Thus, by the same
procedure used in Case 3, we deduce that mq = my = mg and my = ms = mg. Therefore, we
complete the proof of Case 4.

Case 5. ag = 0. In this case, we can combine the first part of (15) to obtain m = ajv; +asvs,
and following the proof of m4 = ms = mg in Case 4, we can conclude that m; = my = ms.

In the case where as = 0, we will prove that m4 = mgs = mg as the following.

On one hand, if by = 0, then from the first part of (15), we have M = byvy + bsrs. Therefore,
my = ms = Mmg.

On the other hand, if by # 0, then by Lemma 2.7 and the first equation of (18), we have
Xo(B) = reiXy(D) = re? \3(B) = ¢ X\3(B). Then, similar to the procedure of Case 3, we have
m1 = meo = mg and my4 = ms = mg, which implies that the proof of Case 5 is completed. [J

4. CONCLUSIONS

It is well-known that for the Lagrange equilateral-triangle central configuration of Newtonian
3-body problem formed by an equilateral triangle, the masses located at the vertices of the
equilateral triangle may not be equal. But for planar twisted configurations formed by two
concentric equilateral triangles with any twist angle #, the authors of the paper [24] found that
if the masses in each separate equilateral triangle are not equal, then the six masses cannot
form a central configuration. Subsequently, for the spatial twisted configurations formed by two
parallel equilateral triangles, when the twist angle is # = 0, Theorem 1.2 of [18] implies that
there is no central configuration with unequal masses located at the vertices of each separate
equilateral triangle. Now, we prove that if € [0, 27|, then there is no spatial twisted central
configuration with unequal masses located at the vertices of each separate equilateral triangle.
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